AN TVALUATION OF STATISTICAL THRMS, FORMULAE GRAPHS, AND TABLES USED IN RESEARCH

by
T. O. PUOKETT

Contribution of the Graduate school Indiana State Teachera College Number 46

Submitted in Partial Fulfillment of the Requirements for the Master of Arts Degree
in Education
1931

The writer is particularly grateful to $M x$. E. E. Ramsey, Doctor J. W. Jones, and Doctor J. R. Shannon, for their suggestions, counsel, and criticism in the preparation of this thesis, also to the efficient staff of librarians in the Indiana State Teachers College library, for their untiring assistance in the gathering of these data.

TABLE OF CONTENTS

Page
LI3T OF TABLXS 1.v
I. ITRRODUCTION 1
A. The Problem 1
B. Prooedure 2
II. RESULTS OBTAINED PROM TEXT BOOKS. $\$$
A. Measures of Oentral Tendency 5

1. The Mean 5
2. The Modian. 8
3. The Mode 9
B. Measures of Variablifty 11
4. Range. 11
5. Standard Deviation 12
6. Quartile Deviation 13
7. Kean Deviation 15
O. Meamures of Relationghip. 16
8. Correlation. 16
D. Tabular Representation 20
E. Oriphie Representation. 22
9. Irequanoy Polygon. 22
10. Histogram 23
11. Bar Diagram. 23
12. Geotional Bar Dlagram. 25
F. Formulae 25
13. The Mean 25
14. The Median 26
15. Quartile Deviation 27
16. Average or Mean Deviation 27
17. Standard Deviation. 29
18. Coeffioient of Corrleation 30
19. Probable Error 31
III. RESULTS OR OHECKING THESES AND SURVEYS 33
A. Measures of Central Tendency 33
20. The Mean 35
21. The Median 35
22. The Lode 35
B. Measures of Variability 37
C. Measures of Relationship 40
D. Graphic and Tabuiar Representation 40
F. Pormulae 43
IT. CONOLEBIOR 解
V. APPYNDIX 57
23. Blbliography 57
B. General Table of Terms 63

LIST OF TABLES

Table Page
I. Measures of Central Tendency As To Frequenoy of ocourrence 7
II. Frequency of Ocourrence of Measures of Variabil- 1ty Used In Text Books 24
III. Frequency of Ocourrence of the Measures of Relationship Used in Text Books 19
IV. Frequenoy of Oocurrence of Graphic and Tabular Representations Used in Text Books 24
V. Frequency of Occurrence of Formulae in Texts. 28
VI. Meapures of Central Tendenoy Used in Theses. 34
VII.Measures of Oentral Iendenoy Used in Surveys. 36
VIII.Measures of Variability Used in Theses 38
IX. Measures of Variability Used in Surveys 39
X. Measures of Relationship Used in Theses 41
XI. Measures of Relationship Used in Surveys 42
XII.Graphic and Tabular Representation used in Theses 44
XIII.Graphio and Tabular Representations used in Suxtreys 45
XIV. Firmulae Used in Researoh 46
xV. General Terms Used in Texts, Theses, and Surveys 63

I. INTRODUCTION

A. The Problem

Having been rather olosely assooiated with the subjeot of mental and achievement measuring in college, in research work, and in the practical application, the question presented itself as to part of the statistical terms, formulae, graphs, and tabular representations taught in the mental measurement classes of the different oolleges, were actually being used by the students in their research work. After the acoumulation of these data the writer hopes to be able to evaluate these terms, formulae, graphs, and tabular representations as to major and minor importance and to deterrine whioh should be given the major emphasis by both the teacher and the student in the mental measurement classes in the future.

B. Procedure

In order to arrive at a satisfactory conclusion on the problem as previously stated, it was neaessary to get both the theoretical and the practical viewpoint. By using a
-- 1 glossary of three hundred terms used in educational research

1
C. W. Odell, A GZossary of Three Hundred Terms Uged In Resesroh.
and measurement as the oriterion, a satisfactory foundation was layed to obtain the desired data. A thorough examination was made of twenty-one of the leading texts in the field of mental and achievement measuring to determine what was aotually being taught by the different colleges in this ifeld, and a chart made of the texts examined with the frequency of oocurrence of each of the three hundred terms, formulae, graphic and tabular representation used in research work. The possible grouping of these terms Into major and minor classifications as to frequenoy of ooourrence was watched very closely. The number of times that each author used each of the temm, formulae, tables, and graphs, the total number of times each term was used by all the authors combined, the total of all the terms used by all of the authors, and the total of all the terms used by each of the authors were reoorded. Following this came the examination of twentymone masters and doctors theses from Ohicago and Columbia Universities to determine the extent to which these terms as taught were actually being used in researohwork. These data were complled and recorded on a large chart ${ }^{3}$ 1

See Table pare 63

2
Gee Table page 63
3
Sea Chart paxe 63
listing the theses, the author, and the frequency of occurrence of the different mental measurement terms, formulae, graphic, and tabular representation, the number of times each term was used by each one of the authors, the total number of times each term was used by all the authors, the total of all the terms used by each of the authors and the total number of times all the authors used all the terms. In addition to the examination of these texts and theses, twenty magazine articles and eight surveys were examined to determine what was being used in pactical application of what was learned in the mental measurement oourses, and the same method of tabulation was used as previously mentioned. From these data the relationship was determined between the terms, formulae, graphic, and tabular representations emphasized in the mental measurement courses and those same terms, formulae, graphic, and tabular representations actuakly used in research work, by classifying them into two classes, as majors and minors, in respect to their frequency of occurrence. This was done by placing all the terms, formulae, tables, and graphs used by at least fifty per oent of the

1

textbook authors in the major olass and those under fifty per cent in the minor class. If these major terms, formulae, graphs, and tables were used by approximately fifty per cent of the theses writers, that was considered sufficient proof to warrant their being classified as major terms used in research. The surveys were classified in approximately the same manner and then a general conclusion was arrived at and speoific terms were recommended as being used sufficient to warrant their being taught to students of research work.

II. RSGUTTS OBTAINED FROS TVXT BODKS

A. Meagures Of Central Tendency

1. The Hean. In determining the frequency of ocourrence of the measures of central tendency, namely, the mean, the median, and the mode, the texts of twentymone of the leadine authors in the field of mental and echievement measurement, were read and thoroughly aheoked for these terms. This investigation showed that the nean as a measure of central tendenoy, was uaed more frequently than any of the other measures, beling used consiatently by each of the twenty-one authors with a grand total of times used being 1 eight hundred and forty-nine. These authorities did not use the term, mean, in all instances as the terms mean, average, and arithretio mean were used interohangeably, with the term, average, belng used most frequentiy with a total of five hundred and forty-nine oocurrences. This may be acoounted for by the fact that the word average may be used more generally than the others, making the term, mean, prefarsble as it has a more specific use and the average may be gaved for more inoluaive use, and much oonfusion avoided. The aft thmetio mean was used less irequenthy than the others,
having been uged only eighty-five times, because of the trend toward standardization of statistical terms used, and a desire for simplicity. In recent years the mean has become quite popular for statistioal use owing to the development of methode of computing which greatly reduced 1 the amount of labor involved. The mean will readily be recognized as the so-called average which is usually taught In the fifth grade of the elementary schools. The mean is commonly defined as the value resulting from the dividing the sum of the measures under consideration by the number of such measures. In more recent developments in mental measurement it has come to mean a point on the scale such that the sum of the deviation above it is exactly equal to the sum of the deviation below it. The mean is to be used When every score should have an influence in determining the 2 average or when the lowest unreliability is sought. It is greatly effected by extreme cases and for that reason should many times give way to the use of the median or the mode. It is lound by dividing the sum of scores by their number as in the formula
H. A. Greene, Morkbook in Mental Measurement. p. 15 . 2
W. A. MoCall, How To Measure In Eduagtion. p. 377.

TABLE I
MEASURES OF CENTRAL TENDENCY AS TO FREQUENCY OF OCCURRENCE

		:		:		:	
		:		:		:	
		:		:		:	
Text Book		:		:		:	
Author	Mean	:	Median	:	Mode	:	Total
		:		:		:	
Green and		:		:		:	
Jorgensen	14	:	28	:	1	:	33
Monroe, De-		:		:		:	
VOBA \& Kelly	26	:	27	:	0	:	33
B. R.		:		-		:	
Buokingham	20	:	11	:	5	:	36
		:		-		:	
M.R.Trabue	75	:	28	:	13	:	116
T.L.Kelly	53	:	θ	:	0	:	63
		:		,		:	
W.A.MoCall	61	8	31	:	0	:	93
		:		:		:	
H.O.Rugg	64	:	25	:	16	:	105
		:		:		:	
H.O.Rugg	86	:	26	:	15	:	227
				:		:	
E.M.Paulu	6	:	23	:	0	:	29
		:				:	
S.L.Presmey	13	:	32	:	0	:	44
O.A.Gregory	72	:	27	:	8	:	107
Smith and		:		:		:	
Wright	33	:	24	:	2	:	49
		:		:		:	
L.M.Terman	42	:	10	:	0	:	53
Tilson and		:		:		:	
Hoke	25.	:	33	:	1	:	59
		:		:		:	
F.N.Fraeman	40	:	18	8	7	:	65
		-		:		:	
$\frac{\text { H.S. Monroe }}{\text { Stoddard }}$	31	:	34	:	0	:	55
Stoddard G.M. Ruoh		:		:		:	
G.M. Ruah	29	:	31	:	0	:	50
P.M. Bymonds	47	:	8	:	0	:	55
W.8. Monr00	20	\vdots	12	:	0	:	32
G.M. Ruom	50	:	11	:	2	:	68
H.A.Craeno	58	:	31	:	0	:	83

1
The Median. The data brought out the fact that the median was used as second choice in the use of terms in measurement of central tendenoy. Although being used by each of the twenty-one authors it did not ocour as frequently as the mean. It was used by twenty-one authors With a total of four hundred thirty-eight times. The reason for its being used as a secondary term in measurements of central tendency may be accounted for by the fact that the median has not been rigorously defined, or, if defined has not been generally accepted and has led to considerable confusion in its computation. It has been dem fined as that point on the scale of the frequency distribution on each side of which one half of the measures fall. Another definition is that the median of a series is that 1tem, when arranged consecutively, divides the distribution into equal parts. Because of these differences of opinion as to 1 ts definition, and the difficulty of its computation, the median has not been as popular as a measure of central tendency as it might be if a more definite and uniform de-

1

gee table page 7
2
C. A. Gregory, Hundamentals of Educational Heasurement. p. 290.

3

H. Secrist, An Introduation to Statistioal Methods p. 238.

Ifition was formulated and computation simplified by the leading authorities in the field of mental measurement.
3. The Hode. The mode, defined as that measure of central tendency of a variable fact which appeare more fre1 quently than measures direotly above or below it or in more simple language, the score made by most of the puplis was found by this research to be used fewer times than any of the other mearures of central tendency. The mode mas used by only ten of the twenty-one authors and appearing only sixty-nine times in the moasurement texts. The mode has its advantage over the mean in that it shows precisely where the majority of the oases fall, rather than being misled by an average that has been greatly raised or lowered by an extreme case whioh may not be a true measurement. Another adVantage is in the simplioity of its determination as it is only necessary to examine the frequency distribution and locate the interval where the maximun frequenoy occurs. The reasons for this infrequency of ocourrence as shown by these data are that the mode is unetable and may be mariedly changed

1
C. A. Gregory, Fundamentels of gduaztional Measurement, p. 287

Wright and smith, Tegts and Measurements, p. 50. 3
c. A. Gregory, Tundamentals of Educational yeasurement, p. 287.

1
by the shifting of a few cases and only deals with the most representative measures and neglects the extreme cases as it is determined by the most frequent measures only. Frobably the most cominon formula for its oalculations that Give approximations to the true mode is that three times the median less twice the mean equals the mode. In summing up the preceding disoussion, the nature of the data and the problem to be solved must determine the measure of central tendency to be used in computation. If the size of the measures and the number of cases are to be taken intonoonsideration, then the mean is the term to be used. If, however, the most oharacteristio measure of the group is wanted, the mode best satisfies this condition. The mean has the advantage of being a common measure and one with which the publio is familiar and its computation simple, but is greatIy effected by extreme cases in whioh instances the median or the mode would be more desirable.

1
Wright and Smith, Tests and Measurementig, p. 50. 2 p. 302.

3
See table 1, pare 7.

B. Measures of Variability

Some measures of variability, expreesed as the distance on the scale that will include a certain proportion of the measures in the distribution, was found to have been used rather cenerally by each of the twenty-one authors, depending largely upon the nature of the distribution and the arbitrary choice of the writer. The four measures of variability from wich the authorities might eloot to use ether or all of then are range, standard deviation, quartile deviation, and mean deviation. This investigation showed that these measures mere used six hundred and twentyfour times and the rank a to times used was rance, standard deviation, quartile deviation and mean deviation.

1. Range. The range of a series of gcores or measures Is the diatance from the highest to the loweat meagure and indicates the extent to whion the extreme measures differ or vary. It indicates somewhat the oloseness of grouping of the measures and 18 always measure of distance on the ecale. The data showed that the range was the most common term used as a measure of variability, having been used three hundred and thixteen times by nimeteen of the twenty-one authors.

1
 See table pare 24
 2
 See table pare
 24

This aondition was to be expected as the range is the digtance coverod by all the neasurea, while the other terma may include some distinot part of all the measores. In order to compute the range it is neoessary to know the largest moanure and the amellest neacure and then group the ate into step intervals and subtract the lower Iimit of the lowest sten interval from the uper inmt of the highest step intorval. The range as a moasure of variablilty is the most oomonly used and the eastegt computed but is the least reliable beoause it is go casily effeoted by the vartation of a angle score.
2. Standard peviation. The standard deviation, which includes approximately the mLdale two-thixde of the diatri2 bution, is the aquare root of the mean of the equaxes of the deviations, winen taken from a meadure of central tendency. 0ither the mean or the median. Thita masure was found to have been uged by aixteen of the twenty-one authors one hum3 dred and ninety-four times. In computing the etandard deviation the formula $\sqrt{\frac{2}{N}}$ Is aimple, 41 , however, the number of oases 1 s laxge, the date; are arranged in a frequency dimtribttion and the formula $5 D=1$ lisfy used. A point in faror of the use 1
 2 Q. W. Odell Equastional statistios, p. 201 3
Gen triode pace
of the atanderd deviation 13 the fect that it bears a definite relation to the nomal probability curve. It has the sane relation to the ourve that the radius of a cirole bears to the oirole. Then the standard deviations are mall the meagures are concentrated near the center of the curve and the ourve rises rapidly and if the standard deviation is great the curve is flat and the measures are saattered widely from the oenter.
3. Quartile Deviation. The quartile or median deviation was found to rank third in measures of variability uged, having been ueed by nine of the twenty-one authors but used rather sparingly, zppearing only sixty-6wo times. The quartile deviation applies to that portion of the aigtribution between the Iirst and third quartiles and in oomputed by taking one half the range contained in the middle half of the distribution. The formula used most commonly is $Q, D=\frac{Q_{3}-Q,}{7}$ or the firat quartile subbracted from the third quartile and the remender divided by two. In the use of the quartile deviation it does not show a complete desoription of the total distributions but gives a

[^0]TABLE II

statement as to the form of the distribution with some measure of its central tendency and some measure of its digpersion and in the majority of the standard tests will tell the most important part of the story.
4. Kean Deriation. The mean deriation, the mean of all the deviations from a point of central tendency, when laid off on each side of the average in a normal distribution, includes, roughly, fifty-seven and five tenth per cent of the cases. The mean deviation was used by six of the twenty-one authors with a total of fifty-five times used, placing it in fourth place in the use of the measures of variability. This may be accounted for by the fact that the mean and standard deviation are used for the same purpose with the atandard deviation being the most aocurate and most desirable method of ascertaining the deviation from points of central tendency. An advantage of its use is the fact that it may be computed without going through the laborious task of tabulating the scores. It may be computed from either the median or the mean and would be the same from either if the distributions were symmetrical. From a mathematioal standpoint it would seem that the median

1

See table page 14

1s the proper measure of central tendency to use in the 1 computation of the mean deviation. It may be found by adding together all the deviations from a point of central tendency and dividing the sum by the number of measures in the group.

O. Measures of Relationship

Measures of relationship go a step farther than the mere knowledge as to the distribution of the measures in a series of educational data and enables us to compare one series with another and shows us the movement of the group as a whole. The terms used by the twenty-one authors in disoussing measures of relationship were grouped into those of correlation, coefficient of correlation, zero oorrelation, positive, and negative correlation with the entire group having been used six hundred and twentysix times.

1. Gorrelation. Correlation was found to refer to that interrelationship existing between the separate charaoters by which they tend, in some degree, to move together. When two quantities are so related that the fluctuation in

1
0. A. Gregory, Educational Measurements, p. 309

2
A. L. Bowley, Iemente of Statistios, p. 316
one is in syapathy with the fluctuation in the other the quantitieg are sald to be correlated. This tern was used three hundred twenty-eight times by twenty of the twentyone authors investigated. The coefificient of oorrelation is the unit with whioh we generally measure the degree of likeness or correlation of one geries with another. It is a numerical index which compares and summ marizee the extent to whioh the corresponding meanures in two series depart from their regpeotive averages. Although the ooefricient of corrolation is a very definite numerical expresaion whion siors the degree or amount of relationship, it is ratier difioult to interpret its meaning in oxdinary thought and language. One of the questions that presenta itself is hom large a coofficient must be to be oalled high or how small to be oalled 10 and that a comparatively high correlation may be relatively low when compared with correlations obtained from other data or 7ifth a perfect correlation. The ooefficient of correlation was found to have been used two hundred sixty-nine times by seventeen of the twenty-one authors. This term mas found

[^1]to have been used ratior generally sinoe it is needed whon any degree of relationship is shown to exist. The basic formula used to ocmpute the oobificient of corrom lation is the fearson produot-liowent nethod of $\mid=$

It is found in terms of measures of ongrat tendenoy and messures of variability. The method used is to compute the mean of each meries, find the doviation of each measure from ita mean, multiply it by the corresponding deviation froia the mean in the other series, and find the sum of the sun of these products for the numerator of the formula. The denouinator is the product of the standard deviations of the two series. in order to gain any knowledse concerning the relationsifp of measures, whioh is very necessery in detemining the posesible development or retardation, some mathematioal solution nust be arrived at. The product-moment method of calculation hae been the one most generally acoented to 1111 that need. Either positive or negative correlation may range all the way from perfect correlation, whioh means that not only do the variables of the two series vary in in the eame direction, but that they vary equally, down to none at all which is zexo correlation. If, after thorough computation, no correlation is found to exist between two

TABLE III

FREQUENOY OF OCCURRENCE OF THE MEASURES OF RELATIONSHIP

Author	: Согre2-iation		: Ooet. of - Correl.		$\begin{aligned} & \text { : Zero } \\ & \text { :Conrel } \end{aligned}$: NagativeCoorcel.			$\begin{aligned} & \text { : Positive } \\ & \text { :Correhe } \end{aligned}$
Greene and	:		:		,		-		:	
Jorgoneon	:	8	:	7	:	1	:	1	:	1
Monroe, De-	:		:		,		:		:	
Vose Kel27	:	6	:	5	:	0	:	0	:	0
B. ${ }^{\text {R }}$.	:		:		:		:		:	
Buokingh am	:	3	:	1	:	0	:	0	:	0
	:		:		\%		:		:	
M. R. Trabue	:	4.	:	31	:	0	:	0	:	0
	:		:		:		:		:	
T.L.Kel 27	:	34	:	9	:	0	:	0	:	0
	:		:		:		:		:	
T.A. MOCa 11	:	33	:	5	:	3	: :	0	:	0
	:		:		:		:		:	
H.O.Bugr	:	14	:	25	:	4	:	1	:	1
	!		:		:		!		:	
H.O.Ruge	:	30	:	11	:	0	:	0	-	0
	:		:		:		:		,	
E.M.Paulu	:	1	:	0	:	0	:	1	:	1
	:		:		:		:			
S.L. Presgey	:	4	:	1	:	0	:	0	:	0
	:		:		:		:		-	
O.A.Grerory	:	26	:	30	:	0	:	0	-	0
Smith and	:		:		:		:		:	
팦ght	:	37	:	6	:	0	:	1	:	3
	:		:		:		!		:	
L.M.Tarman	:	7	:	0	:	0	:	0	:	0
T1280n and	:		:		:		:			
Hoke	:	2	:	2	:	0	:	0	:	0
	8		:		:		:		-	
F.X. Fraoman	:	35	:	34	:	1	:	3		2
	:		8		:		!		:	
W. S. Monroe	:	16	:	89	:	0	:	0	:	0
Ruoh and	:		:		:		:		:	
Stoddses	:	14	:	0	8	0	:	0	:	2
P.14.Symonds	!	39	:	36	!	1	:	1	:	0
	:		:		:		:		:	
W.8. Monroe	:	0	8	0	1	0	:	0	:	0
	\%		:		:		:		:	
Q.M.Ruoh	:	37	:	25	:	3	:	0	:	0
	:		-		,		:		:	
H.A.OFacme	8	31	:	88	:	0	.	0	:	0
Total	:	388	8	289	:	22	:	8	:	9

series, it is interpreted as zero correlation. This oondition was found to have been referred to twelve times by 1 six of the authors. Positive correlation means that the two variables vary together, that is as one increases the other tends to increase, as shown by six of the authors 2 for a total of nine times used. Negative correlation means that the two variables vary together, but as one increases the other tends to decrease, as shown by six of the authors for a total of eight times.

D. Tabular Representation

Caloulations are made and results found for some definite purpose. The reader is desirous of obtaining all the information possible about the subject under discussion. The author, in order to suocessfully portray the idea in mind, is very anzious to find some method by which this may be done with utmost satisfaction. The use of tabular representations has been very extensively resorted to, to bring out facts that disoussion fails to olearly bring before the reader. Some form of tabular representations are necessary before the different relationships, whioh are so necessary

2
See table III, D. 19.
2
See table III, D. 12.
3.

See table IIL, D. 12 .
in measurement, may be suocessfully caloulated. Tables were used rather extensively by twenty of the authors with a total of six hundred and twenty-one times used. The fact that one of the authors did not use tables in any form may be explained by the fact that his text was totally of the discussion method with no problem method presented in whioh tabular reprecentation might be needed. Authors of more recent publications were found to have made use of tabular representations more extensively than those of the earlier publioations. Tabular representations have enabled writers to say more in less apace than would be possible in the disoussion method. Measurements boing largely mathematical and tables being a great aid to the statistician, the high degree of positive correlation between the atatistioal methods and measurement and the use of tabular representations may be acoounted for:

E. Graphic Representations

The use of graphs to represent frequenoy distributions 1s a very comon and satisfactory system because of the faot that data may be more olearly and effeotively presented.

2
 gee tabla pare 24

Many pergons who are confused with tablea may reedily Interpret well constructed graphs. Those who are able to understand tables will be more able to readily understand Graphic representations. The field of graphic representtations is rather cleerly divided into frequenoy polygons, bar diagrams, histograms, nectional bar diagrems and nector diagramg. These different forms of graphs were found to have been used rather extensively by each of the twentyone authors. They were used four hundred and twenty-seven times by the twenty-one authors in the order of frequenoy previously named, with no author failing to use graphs in some form or other.

1. Frequenoy Polykon. The frequency polygon was the graphio representation most frequently used, having been used by each of the authors with a total of two hundred and ninety-eigitt times used. Thin graph beine simple in construction and easily interpreted has made it one of the most desirable one of the group. This graph is made by construoting a perpendicular, mose height represents the number of cages, at the mid-point of each interval and then connecting the tops of these perpendicularg by gtraight

1

 gee table neselines, forming the frequency polygon. This method of representation has been used very extensively in the normal frequenoy curve showing the normal frequenoy distribution.
2. The Histogram. The histogram or column diagram is composed of a series of rectangles each of which has as its base one class interval and as its height the number of cases in the interval. Frequently the lines dividing the rectangles are omitted and the lines of the whole histogram drawn. This graph has an advantage over the frequency polygon in that the area of the space above each interval represents the frequency in that interval. The individual case may also be shown by its use, by dividing each rectangle into as many squares as there are cases and labeling each so that it can be identified. In the investigation it was found to have been used fifty1 one times by fourteen of the authors.
3. The Bax Diagram. The bar diagram was found to have been used by thirteen of the twenty-one authors for a total of fifty-five times.

1
See table IV, p. 24.
2
See table, page 24.

TABLE IV
FREQUENOY OF OOCURRENCE OF GRAPHIC
AND TABULAR REPRESENTATIORS

This is a diagram constructed with vertical or horizontal bars, with a bar for each case and the frequency represented by the length of the bar. This graph is very readily understood and used quite often in graphic representation.
4. The Beotional Bar Diagram. The sectional bar diagram was used by eight of the authors with a total of twentyLour times used. This may be used in order to represent parallel oases with their possible correlation on the same diagram. This graph meets with favor as used on a comparative basie.

F. Formulae

The use of the proper formulae is a very neoessary factor in making the different computations in the field of measurement and researoh. In this research fifteen of the twenty-one authors was found to have used some formu2
lae for a total of two hundred and elght times, inoluding the formulae for mean, quartile deviation, coeffloient of correlation, and the probable error of the mean, median, sigma, and coefficient of correlation.

1. The Kean. In finding the mean six of the authors
1 See tahle parce 28 2 Gean table pace 릉
used the formula $M=\frac{\pi}{N}$ or the sum of the values of all of the measares divided by the number of the neas1 uxes. This is the most simple way of computing the mean although it, many times, involves much labor. Three of the authorities used the formula $N=\frac{E f(r)}{N}$ or the mean equals the sum of the products of each measure times the frequency of the measure. This formula may be used when the frequencies are large and considerable time and labor saved. Another method similiar to the second type is to group the measures in a frequency distribtion by fivea, with all of the cases in each class considered as being at the mid-point of each class. This formula would be $M=\Sigma \in$ or the sum of the frequencies times the mid-point of the measures.
2. The Median. In caloulating the median the formula Md: $=\frac{N}{2}$ is the most commonly used. This is the number of cases divided by two and plaoing the median at that point on the scale. some authors used the formula $M d=\frac{N+1}{2}$ which 18 not mathematically sound as the results obtained by using this formula are not always the some. This for-

1
0. \%. Odell, Educational Statintion, p. 66.

2
C. A. Gregory, Iundamental of Eduoational Meagurement
mula arose through a misconception of the exaot meaning of the median, it being taken for a particular score or 1 measure rather than a point on the scale.
3. Quartile Deviation. The formula $Q=\frac{Q 3-Q}{R}$ was the one used by four of the authorities in finding the quartile deviation. The result of this formula shows the quartile deviation to be one half the distance between the first and third quartiles. Some writers do not use this because it is sometimes not considered as a measure of variability at all, since it is not an actual distance from an average. It is a measure of variability only when the distribution is symestrical, however, it may be con3 sidered as such without serious error.
4. Average ox Mean Deviation. The most commonly used formula for finding the average deviation is $A D=\frac{\text { m }}{\pi}$ or the average deviation equals the sum of the deviations divided by the number of cases. This is an advantage beoause of its simplicity and is most desirable when the num ber of cases is small. Another formula used is $A D=\frac{\leq 1}{I}$ or average deviation equals the sum of the products of the frequemoy times the measure divided by the number of cases.

1
0. W. Ode11, Eduaational Statigtios

2
0. W. Odell, Rducational statistios, p. 86

3
0. W. Odell, Edugetional gtatisties, p. 121

TABLE ∇

FREqUENOY OF OOCURRENOE OF THE TORMULAE

This may be used with an averace number of cases. Where a great number of cases are considered the formula $A, D=\frac{\leq G+C(H-F)}{N}$ average deviation equals the sum of frequency times the frequency loss minus the frequency gain divided by the number of azses times the size of the step interval. This may be used when the data is grouped in intervals.
5. Standard Deviation. Some formula for the computation of the standard deviation was used forty-three times by nine of the authors with the formula $S D \cdot=\frac{\mathbb{E}}{\pi}$ being used by seven of the nine with a frequency of thirty times used. This is computed by taking the square root of the sum of the frequencies times the deviation squared divided by the number of oases. This is to be used when data are arranged in irequency distribution. The formula $S D,=\frac{E^{2}}{N}$ was used by five of the authore with a frequency of nine times used. This is computed by taking the square root of the sum of the deviations squared divided by the number of eases. This is more simple in its computation and may be used for the standard deviation of

1
M. E. Macdonald, Prantiogl statiatiog, p. 121

2 See table y, ph 28.
3
gee table V, D. 28.
a simple series. The formula $\leq D,=\frac{2 F, R^{2}}{N}-C \times S$ was used by three of the authors investigated. This formula is used When the wiath of the cless interval is greater than one unit and the assumed rather than the true mean is used. In this formula the standard deviation equals the square root of the sum of the frequencies times the deviations squared divided by the number of the cases minus the corrected error times the size of the step interval.
6. Coefficient of Coxrelation. In the computing of the coefficient of correlation some formula was used by thirteen of the twenty-one authors for a total of fietyfour times. The formula used most frequently was the peazson's Product-moment method of $r=\frac{\sum X Y}{\sqrt{E x} x^{2} t y} \quad$ or the sum of the deviation of a measure in one series from the mean times the deviation of a messure in the other series from the mean divided by the square root of the sum of the square of the deviation in one series times the sum of the square of the deviation in the other series. This method Fas used by twelve of the thirteen authors. The formula used

1
O. T. Odell, Educational Statisties

2
See table I, page 28.
3
4 See table \mathbb{Y}, page 28.
See table $\#$, pare 28.
by five of the thirteen authors was Spearman's Foot-Rule method of $R_{m}-\frac{G E}{K_{2}-g_{1}}$ or the coefficient of correlation equals one minus six times the sum of the gains divided by the number of cases squared minus one. The formula $P=1-\frac{6 \& d^{2}}{N\left(N^{2}-1\right)}$ using the Rank-Difference method was used by two of the authors. This formula is that the coefficient of correlation one minus six times the sum of the difference squared divided by the number of cases times the quantity, number of cases squared minus one. 6. Probable Error. Formulae for the computation of the probable error was used by eight of the twenty-one authors with a total of seventy-nine times used. The formula P.E $=.6745 \frac{S D}{\sqrt{N}}$ or probable error equals .6745 times the standard deviation divided by the square root of the number of cases, was used twenty-one times by six of the authors. The formula $8454 \frac{50}{\sqrt{2}}$ or the probable error equals . 8454 times the standard deviation divided by the square root of the number of cases, was used twentyone times by four of the authors in computing the probable error of the median. The formula $6745 \frac{S D}{\sqrt{2 N}}$

1
See table \mathbf{V}, page 28.
2
See table V, page 28.

3

See table V , pacse 28.
or probable error of the standard deviation equals .6745 tines the standayd deviation divided by the square root of twice the number of cases, was used by three of the authors in computing the probable error of sigme. The formula $P E=6745 \frac{1-r^{2}}{N}$ or probable error equals .6745 times one minus the coefficient of correlation squared divided by the square root of the number of cases, was used by eight authore in computing the probable error of the coefficient of correlation.

III. RESULTS OF OHEGKING THESES AND SURVEYS

In determining the frequency of occurrence of the different statistical terms, formulae, graphic, and tabular representations actually used in researoh work, twenty-one theses from Columbia and Chioago Universities which had been written by students of these universities applying for the bachelors, masters, and doctors degrees, were thoroughly examined and each occurrence checked. In addition to this work, twenty magazine articles and eight surveys were examined and results ohecked. This was done in order to determine to what extent these terms were being used by the different students of researoh and in what proportion they were being used to each other and to the same terms used in the twenty-one texts previously examined.

A. Measures of Central Tendency

In checking the above researohes for the measures of central tendency, they were found to have been used by eighteen of the twenty-one theses writers for a total of

TABLE VI
MEASURES OF CEATRAL TEADENOY USED
IH THESES

three hundred and ninety-one times and by each of the survey writers for a total of two hundred and ninety-four times making a total of six hundred and eighty-five times used by practical writers.

1. The Mean. The mean was the most popular of the measures of central tendency, having been used by eighteen of the twenty-one theses writers and each of the ten survey writers for a total of five hundred and fifteen times 2 used. These figures ineluded the arithmetio mean and the average which gave this term a more general use than the others.
2. The Median. The median was used by twelve of the twenty-one theses writers for a total of seventy-one times used and by eight of the ten surveys writers for a total of ninety-two times, making a grand total of one hundred 3 and eighty-three times used by all.
3. Mode. The mode did not seem to have been used very extensively in these writinge as it was used only seven times by three of the authors, while it was not used at all in the surveys.

1

See table page 36 2
See table pace 36

3

See table pace 36

4

Soe table pare 36

TABLE IX

MEASURES OF CENTRAL THNDENCY USED
IN SURVEYS

		:		:	
		:		:	
		:		;	
		:		;	
Surveye, and		:		:	
Writers of	Mean	:	Median	*	Mode
Artioles		:		:	
Journal of Edu-		:		:	
cational researc	26	:	1	:	0
School Review,		:		:	
twenty articles	22	:	14	:	0
Indiana Fural		:		:	
Survey	35	:	5	:	0
Indiana Higher		:		:	
Learning Survey	25	:	0	:	0
		:		!	
Gary Survey	7	:	23	:	0
St.Paul Survey		:		:	
	8	:	14	:	0
Boise Survey	16	:	12	:	0
Bolse Survey		:	12	:	0
Grand Rapids		:		:	
Survey	29	:	12	:	0
Indiana Public		:		:	
Eduoation	16	:	0	:	0
		!			
Smith Higher Iearning Survey		:		;	
	28	:	11	:	0
Total		:		:	
		:		:	
	202	:	92	:	0

B. Measures of Variability

The different measures of variability were found to have been used by fourteen of the twenty-one theses writers with a total of one hundred and two times used and by eight of the ten survey writers for fifty-five times used making a total of one hundred and fifty-seven times used.

The range seemed to be the most desirable of measures of reliability being used fifty-eight times by thirteen of the theses authors and forty-nine times by eight of the survey writers.

The standard deviation was the next in order having 1 been used forty-eight times by nine of the authors.

The quartile deviation came next with only one of 2 the theses writers using it while none of the surveys con3 tained it.

The mean deviation was entirely left out of the twenty4 one theses and the ten surveys.
1 36
2 36
3 36
4 36
Ses table pare

TABLE VII
MEASURES OF VARIABILITY
USED IN RESEARCH

TABIE X
MHASURES OF VARIABIIITY
USED IN RESEARCH (SURVEYS)

Surveys and Magazine Articles	Range	Standard Deviation	Quartile Deviation
		:	
Journal of Educ-		:	
ational Research	3	1	0
		-	
School Review		:	
(Twenty Articles)	1	0	0
		-	
Indiana Rural		:	
School Survey	0	0	0
		-	
Indiana Higher		:	
Learning Survey	3	0	0
		!	
Gary Survey		:	
	6	3	0
St.Paul Survey		\vdots	
	13	0	0
		:	
Boise Survey		:	
	1	0	0
Grand Rapids		:	
Survey	12	0	2
Indiana Public		:	
Education Survey	10	0	0
		!	
Smith Higher		:	
Learning Survey	0	0	0
		- 4	
Yotal	49	$: 4$	2

C. Measures of Relationship

The measures of relationship were found to have been used two hundred and eleven times by fourteen of 1 the twenty-one theses writers and ninety times by six of the surveys witters for a total of three hundred three times. Correlation was the measure most often used with a total of two hundred and thirty-three times by twenty of the thirty-one theses and survey writers combined. The coefficient of correlation was second in use with fourteen authors using it forty-eight times. Negative correlation was used twenty times by four of the witters of theses with the positive correlation being used by only one of the theses writers, with that of zero correlation left out entirely.
D. Graphic and Tabular Representations Graphic and tabular representations seemed to be very popular in the minds of the thirty-one writers of theses and surveys. In this, tabular representations took the lead, having been used by $2 l l$ of the thirty-one writers with a total of eleven hundred and sixty-one

1
gen table pace 42
2 See table pare 14

3

See table para 44 4 and 5 48

TABLE VIII
MEASURES OF RELATIONSHIP USED IN THESES

TABLE X
MEASURGS OL RELADIONSLILP
USKD TM SUAVays

1
times used. Next oame the frequency polygon with one hundred and eighty-eight times used by thirteen of the thirty-one authors. Next in order was the bar diagram With a frequency of one hundred and ten times for eleven 3 authors. Sectional Bar diagrams were not used by any of the writers of theses or surveys.

E. Formulae

The different formulae as found in previous studies did not seem to be needed to satisfy the desires of these thirtymone students of researoh. In the twenty-one theses the formula for the coefficient of correlation was used only thirty-eight times, while only three of the gurveys contained the formula. The formula for computing the probable error was used only eleven times in the theses and none in the surveys. The formula for the standard DeViation was used one time in the theses and one time in the surveys. All the other formalae for computing the mean, median, quartile deviations, and average deviation were omitted entirely.

1

See table page 46

2

Ses table pace 哖

3
See table pace 46
4 Ses table pace 46

TABIE XII
GRAPHIC AND TABULAR FRPRESENTATIONS
USHD TH THESESS

TABLE KIII

GRAPHIC AND TABUIAR REPRESENTATIONS USED IN SURVEYS

TABLE XIV

FORULAT USED IN RRERAROH

III. CONOLUSION

To arrive at the conclusion that all the terms, formulae, graphs, and tables as taught in the mental measurement olasses of our colleges were not actually being used by the student in research work, it was necessary to examine, with a glossary of three hundred terms used in mental measurement 1 as a guide, twenty-one texts of the leading authors in the field of mental measurement in order to ascertain to what extent these terms were actually being taught in mental 2 measurement classes. These texts revealed that out of the three hundred terms suggested as a basis, only seventyeight of them were used by the text book writers. Many of this number were terms that may be used generally, rather than specifically, such as: score, having been used more frequently than any other term, with scale running a close second, and the terms, average, frequemoy, and data being used rather freely. Of the terms of more specific meaning, median headed the list with a frequency of four hundred thirty-eitht times used. Next came the term, norm, with

[^2]
2

See table pare G3

three hundred forty-five times used; the term correlation with three hundred twenty-eight; intelligence quotient with three hundred seventeen; range with three hundred thirteen; and mental age, coefficient of correlation, objective, variability, mean, deviation, ohronological age, probable error, validity, percentiles, standard deviation, ranking, rating, etc., appeared in this order respectively as to frequency of oocurrence. Such terms as average variability unit, chance list, coefficient of correspondence, coefficient of intelligence, composite score, crude data, curvilinear relations, cycle test, decile, derived measure, experimental coefficient, frequency ourve, profile chart, social age, etc., seemed to have either been embodied in some of the other terms or discarded completely as unnecessary to intelligent study. Such terms as these are not sufficiently definite to satisfy an exacting public. The terms used by approximately fifty per oent of the text book authors were placed in the group of major terms and the remaining ones placed in the minor group as to frequency of occurrence. This former list consisted of 1 See table page 63
thirty-eight terms while the later list consisted of the remaining forty terms. The number of different terms used by the individual authors ranged from sixteen as the min-. imum by W. S. Monroe to forty-nine as the maximum by P. M. Symond, with the median at thirty-six and seven tenths. None of these authors approach, very closely, the total number of the seventy-eight terms used as a group.

The five graphs were used very generally, with the frequency polygon being the most favored one, having been used two hundred and ninety-eight times by twenty of the twenty-one authors. The use of the graphs varied from H. O. Rugg, who used some form of graph seventy-two times down to H. A. Greene, who used only two graphs in his entire text.

Tables were used rather freely by each of the twentyone theses writers with the exception of L. M. Terman, who did not use any table at all, while H. A. Greene used the tables most frequentiy with a total of thirty-five tables used.

1

See table page 63

2 See table page 28
3
See table page 24
4 See table page 24 5
See table pace 24

Formulae were not used very generally, the coefficient of correlation having been used by thirteen of the authors as a maximum, with average deviation as the minimum, having 1 been used by only two authors.

Terms that had fallen into the major class in the text books also appeared most frequently in the theses, as the same central tendency was noticeable in each of the major classes, but many of the major items in the text were not considered as necessary in the theses. The minor terms seemed to become more and more unnecessary as the researoh students applied his knowledge practically. Of the thirtyelght terms that were used frequentiy in the text books examined only fifteen of them were used with any degree of consistency in the theses examined. Of these fifteen, the majority could be classed as terms with a general rather than a speoific meaning. The term, average was used by eighteen of the twenty-one authors and the term score was used by eighteen writers also, with the term data used sixteen times and range, correlation, coefficient of correlation, mean, median, and mental age appearing in this re-

1

See table page 63
2
See table page 63
spective order.
Tables seemed to be a favorite and very desirable method of bringing the data before the reader as they were used consistently throughout the texts and then Were carried over into the practical side by being used by each of the theses writers for a total of four hun1 dred forty-three times. Uniformity seemed to be the thing that was most desired here in the presentation of these data and the table form met this requirement. The graphs were not used as frequently as the tables, as they were only used one hundred fourteen times with the erequency polygon first with fifty-two and the seotional bar diagram lagt, which did not appear in any of the the2 ses. The different formulae did not seem to be needed by the theses writers as they were only used sixty-nine times with that for coeffioient of correlation being used thirty-eight times by ten of the authors, which was the only one that was used with any degree of consigtency. This may be aocounted for by the fact that practically all the computation were made outside of the aotual theses and were not necessary in the final form, also that the

1
 See table pace 2 年
 2
 See table page 28

computations made by the average theses writer are suffioiently simple that it is not necessary to reduce them to formulae.

In addition to the other investigations, twenty rem search articles and eight surveys were examined to see to what extent these same terms, formulae, tables, and graphs were being used in that field. These articles examined were ones that would find their way out of the realm of the educational institutions into that of the individuals taking part in the practical side of the question and in studying these different terms used in these surveys would give one a fair insight into whet the public as a whole would need if these articles were to be absorbed by them and eny results come from the research work. After these articles and surveys were thoroughly examined the data were compiled into usable form and notations made. of these articles only eight of the tems were used frequently enough to warrant their being placed in the major olassifioation. These terms were all used for a grand total of eleven hundred times with the emphasis being placed upon the ones with more general meaning as in the case of the term,

1
See table page 63
average, being used one hundred eighty-two times by ten of the writers with the term, score, used one hundred fiftyone times by eight of the writers and the term, data, having been used one hundred twenty-five times by ten of the writers and the terms median, correlation, range, scale, and objective used in this order as to frequency with a total of three hundred twenty-nine times.

The tables were used very consistently by each of the ten writers with a total of seven hundred twenty-two times, again showing that tables are a very desirable means of the 2 presentation of data.

Graphe were used by eight of the ten research men with a total of two hundred and forty-one times, bringing the use of graphs somewhat more to the front than was done by the theses writers, this may possibly have been done because of the necessity of placing this material on a more comparative basis than that of the theses.

The different formulae were practioally ommitted in these surveys and magazine articles as they were used by only three of the ten writers with a total of only five

1

See table page 63
2 See table page 45
3
See table page 45
formulae used. Again it was brought out that formulae are not needed in the presentation of research articles. geversl outstanding conditions were noticeable in the relationship existing between terms, formulae, tabular and graphic representations used in the measurement texts and those actually used by the student in research work. The findings in this research work would lead one to think that these 1 three hundred terms suggested as a guide should be classified as to importance. This would result in placing these terms in a classifioation of major and minor terms as to 2 frequency of use. This plan would be substantuated by the data which showed that the terms tended to cluster themselves around central tendencies with the frequency of occurrence very great of those of major importance with a gradual scattering of those of minor importance, even to the extent that some of them did not appear in either the text books or the research materials. The tendency for these terms to group themselves under a few major groups was even more noticeable in the research articles than in the measurement 4 texts. This condition as to frequency of occurrence of

[^3]these mental measurement terms need not imply that the terms placed in the minor classification are not worth learning, but that the emphasis should be placed upon the ones in the major classification with the ones in the minor class being taken up indirectly. Major emphasis should be placed upon the technique of research and the presentation of results in a practioal, understandable form to the public, and that these mental measurement terms should be taught only to the extent to which they may be of practical use to the student in his work in the eduoam tional field in which he is to take an active part in the future. In conclusion one would say that the tendency is to use a smaller number of these terms, formulae, graphio and tabular representations with emphasis upon simplicity of understanding and ease of calculation. This may be aocounted for by the fact that the student of research should be more interested in the quality of the terms used rather than the quantity. This would be further desirable because of the fact that he is presenting these findings to a olass of people that are not statistically minded, who place the major emphasia upon the content of the article rather than
upon the method of approach. It is of vital inportanoe that the resulte of resench be presented in the best possible mannex. These resulte should bo presented in simplified form, from wioh the terminology and procedures involved in the study have been practioally eliminated go that the findings may be readily comprehended by those persons who may be untrained in such technical matters but must nevertheless be depended upon to use the resulte in ways that may be desirable in the improvement of education. In this light one could recommend that the research student not be drilled persistently upon these three hundred theo1 retical terms as suggeated by the author but that the 2 thirty-eight tems placed in the major list coupled with a 3 few from the upyer part of the minor 11 at bringing the total number of essential terms up to fifty terms would give the gtudent sufficient baokground to do research work so far as the terminology of mental meamurements is concerned.

1
C. W. Odell, Glosgery of Three Hundred Tems Used in Research.

2

See table page

3 gee table page 63

V. APPENDIX

> A. Bibliography

Greene and Jorgensen. Use And Interpretation of Eduoationel Tests. New York: Longman Greene and Company .

Konroe, DeVoss and Kelly. Eduoational Testa and
Measuroments. Chioago: The Maomillan Company. Buckingham, B. R. Researoh For Teaohere, Chioago: Silvsr, Burdett and Company.

Trabue, M. R. Keasuring Resulta in Eduoation. Chioago: The Amerioan Book Company.

Keliy, T. L. Interprotation of Eduoational Measurement. New York: The World Book Company.

MoCall, W. A. How To Massure in Fduoation. Chioago: The Maomilian Company.

Rugg, H. O. Primor of Graphios and Statiatios. Boston:
Houghton Mifilin Company.
Rugg, H. O. Statistioal Methods Applied to Eduoation. Boston: Houghton, Miffiin Company.

Paulu, E. M. Diagnostic Testing and Remodial Teaohing. Chicago: D. C. Heath Company.

Prossy, 8. L. Introduotion to the Uso of Standardized Teste. Hew York: The World Book Company.

Gregory, C. A. Fundamentala of Educational Neasurement. New York: Appleton and Company. 1923

Smith and Wright. Tests and Moasurements. Chicago:
Silver Burdette and Company. 1928.
Terman, L. M. Intelligence of Sohool Children. Boston: Houghton Mifilin Company. 1926.

Wilson and Hoke. How To Measure. Chioago: Maomilian Company .

Freeman, F. N. Kental Teste, Boston: Houghton Miffiln Company.

Monroe, W.S. Measuring the Resulte of Toaching. Boston: Houghton Mifflin Company.

Ruch and Stoddard. Teats and Maasurements 17 High Sohool Instruation. New York: World Book Company.

Symonds, P. M. Measurements in Secondary Eduoation. Chiorgo: The Macmillan Company.

Monroe, W. S. An Introduotion to the Thoory of Educational Measuxament.

Greene, H. A. A Workpbook in Educationad Measurement. New York: Longman Greene And Company.

Otis, A. S. Statistioal Method in Eduoational Measurement. New York: World Book Company. 1935.

Odell, C. W. Eduaational Statiatios. The Century Company. 1935.

Holilngehead, A. D. Evaluation of the Use of Educational and Mental Measuring. New York: Bureau of PubIications, Teaohers College, Columbia Univergity. Brinkley, S. G. Value of the Nev Tyoe Teste in the High School. New York: Bureau of Publiaations, Teaohers College, Columbia Univereity.

Snodden, D. S. A Study in Discuised Inteliigence Teats. New York: Burgau of Publications, Teachers College, Columbia University.

Stenquist, J. L. Measurement of Meohanical Ability. New York: Bureau of Publications, Teaohers College, Columbia University.

Jaoobs, C. L. Relation of Teachers Education to Her Effeotivenesg. New York: Bureau of Publioations, Teachers College, Columbia University. Hunsioker, L. M. Study of the Felationshic Between Rate and Ability. New York: Bureau of Publications, Teachers College, Cołumbia Univerrity. Jones, V. A. Effeot of Age and Experience on Fests af Intelligence. New York: Bureau of Publioations, Teachers College, Columbia Univerifity. Weidemann, C. L. How To Construat True-False Testg. New York: Bureau of Publioations, Teachers Collage, Columbia Univereity.

Morphet, R. L. Keasurement and Utilization of School Buildings. New York: Bureau of Publioations, Teachers College, Columbia University. Steaoy, W. F. Steary, The Interrelations of Mental Abilities. Net York: Bureau of Publications, Teachers College, Columbla University.

Konnon, L. H. Teata of Ifterary Vocabulary fot Teachars. Hew York: Bureau of Publioations, Teachers College, Columbia University.

Graves, K. B. Specialized Training in Tests for General Intelligence. Now York: Bureau of Publisation, Teachers College, Columbia University,

Frazen, R, The AOcomplishment Ratio. New York: Bureau of Publications, Teachers College, Columbia University. MaCa11, W. A. Correlation of Psyonological and Educational Yeasurement. Now York: Bureau of Publioations, TeaOhers College, Columbia University.

Kelly. F. J. Teachers Karke. New York: Bureau of Publiastion, Taachers College, Dolumbia University.

Garn, H. M. Foundation of Religious Eduoation in Infanoy. Ohiobgo: University of Ohicago Press.

Hogan. R. M. Charaoteristion of Prevooationsi Boys. Ohioago Unifersity of Chicago Press.

Weils. 8. R. Advances bove plateau in the hearning Gurve. Ohicago: University of Chioago Press.

MoAfiee, L. O. An Inveatigation by Standardized Teste of Improvements in Addition Remulting from Various Inoentives. Chioago: Univeraity of Chioago Press.

Waters, R. H. The Influence of guition upon Individual
Learning. Chioago: University of Chioago Press.
Wylie, G. E. Whole Versus Part Method of loarning as Dependent Upon Practioe. Chicago: Iniversity of Chioggo Press.

Banker, H. W. Mental Age Distribution in Sohool Progresg. Journal Of Eduoational Researoh, April, 1931.

Lincoln, E. A. An Age Soale fo the Measurement of Moral Judfement. Journal of Educational Research, Maroh, 1931.

Bayles, E. H. Comparativo Validity Shown By a Group of Objective Tests. Journal Of Eduoational Researoh, January, 1931.

Frank, Paul R. Changing Tendenoles in Eduoational Rogearch. Journal of Educational Researoh. Fob. 1331.

Lee, Mary V. A Gurvey of the Intelifacnoe of Ortopled Childran. Journal of Iducational Researoh. Feb. 2931.

Poters, Charles C. A Gritioal Study of Stendardized Tests in Amarioan History. Journal of Educational Researoh. February 1931.

Hiller, W. 3. Experimontal Stuay In Experimental Group Ing of Komogenoous children. Journal of RduqatLonal research. Fobmuary, 1930. Withers: John Tr. The Soienticio ISothod In The study of Eduation. Journal of idueational iesearoh. 12aroh, 1930.

Wolaman, S. A. Relationghip Betwoen Hich Sohool Achiovement and Educational Counselinns. Journal of nduoationad. lasearroh. Hay. 1930.

Lioss, C. C. How Shall Fe Jrodict Achlovement. Journal of raucational Researoh. October 1930.

Mocelliatar, M. Effeot of Remodial Inatruction in Junior High Sohool. Sohool Review. Fobruary, 1031. Irwin, H. E. Cooperative Proparation of Improved Exame Inotions. Sohool Roview. Tobruary, 1931.

Shannon, J. R. Correlation of IILeh Sohool soholastio Syogess with Iater Minanolal sugoegs. School Roviow. February: 1931.

Kaulfers, Wo Vo Intelligence Faotor in Foreirn Janguage Aohierrempe Sohool Revien, ramairy, 1931.

White, O. W. metiot of Examptions on Distributions of. Sohool Marke Sohool keviewe Apmil, 1931. Werchester, D. A. The Scoring jo the Coitinutty Tosits. Sohool Review. June, 10999

Tablis xv
gensral titras usin in tixts,
iNumber of

[^0]: 1 O. A. Gregory, Educational weagurements, p. 321 2 Enctablepace -14

[^1]: 2
 C. T. Odell, Educational statistios, p. 172

 2
 see table pace 19

[^2]: 1
 0. W. Odell, A Glossary of Three Hundred Terms Used in Researoh.

[^3]: 1
 See C. W. Odell, Glossary of Three Hundred Terms Used In Research.

 2
 See table page 63

 ## 3

 gee table page 63
 4
 See table page 63

