• Under the Influence of Large Woody Debris: A Survey of the La Crosse River In the Upper Midwest Driftless Area

      Prise, Adam (2012-10-19)
      Streams are dynamic environments driven by the force of gravity and shaped by local climate, geology, and vegetation. Large woody debris (LWD) can have important influences on stream processes. The main influence of LWD on these systems is a resistance to flow; this added roughness induces a multitude of channel adjustments. Despite the importance of LWD, streams have been heavily managed by humankind, often involving the removal of debris to improve flow. Recent studies have highlighted the significance of large woody debris in mountain streams, particularly in the Pacific Northwest of the United States and Canada. However, there has been little research on the influence of LWD on streams in the Upper Midwest. This study will specifically investigate a stream (the La Crosse River) in southwestern Wisconsin’s Driftless Area. This area remained untouched by glaciers during the Last Glacial Maximum, but outwash from melting glaciers was deposited here, making the main bed material coarse sand. Combining stream survey methods (channel cross-sections) and a wood census, the influence of LWD was determined through statistical analysis of measurements of stream (velocity, depth, and width) and LWD (total counts, length, DBH, and volume) characteristics, in conjunction with qualitative analysis of detailed cross-sections. LWD are present in the study reach, but few relationships proved statistically significant, while local influences (initiation of scour and deposition) are clearly seen. Explanations of human, regional, historical, and bed form influences are explored.
    • Urban Flash Flood Risk Assessment and Inundation Model Utilizing GIS for Terre Haute, Indiana

      Ishman, Zachary Scott (2015-01-07)
      Use of ArcGIS to examine flash flooding variables and produce a flash flood risk assessment and inundation model for Terre Haute, Indiana. Risk assessment, produced within ArcGIS, indicates that an increase in developed area leads to an increase in very high flash flood risk area and majority of very high risk area resides in developed areas of Terre Haute. Inundation model, produced using ArcGIS and Python, indicates that the proposed model can determine locations of flash flooding, but spatial extent of model predicted flooding is not reliable based on field validation.
    • Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change

      Ward, Jamie L. (2015-01-07)
      Alberta Clippers are extratropical cyclones that form in the lee of the Canadian Rocky Mountains and traverse through the Great Plains and Midwest regions of the United States. With the imminent threat of global climate change and its effects on regional teleconnection patterns like El Niño-Southern Oscillation (ENSO), properties of Alberta Clipper could be altered as a result of changing atmospheric circulation patterns. Since the Great Plains and Midwest regions both support a large portion of the national population and agricultural activity, the effects of global climate change on Alberta Clippers could affect these areas in a variety of ways. Despite this reasoning, relatively few studies have addressed Alberta Clippers, especially in comparison to the other North American storm tracks. In this study, the effects of global climate change on Alberta Clippers are examined by using atmospheric analogues chosen from 1950-2012 based on temperature and ENSO characteristics. Composite maps of regional MSLP at 12-hr intervals, 300mb vector wind and geopotential height at the time of cyclogenesis, and 850mb temperature and geopotential height patterns 36 hours after Clipper formation are constructed. Difference maps of 300mb geopotential height patterns between each of the analogues are also constructed. One-way ANOVA tests are also used to analyze Alberta Clipper latitude and longitude values at t=0, Clipper trajectory azimuths from t=0 to t=60, central MSLP values for these storms twelve hours after formation, and MSLP pressure gradients at t=24. The results from these tests indicate that, of the four analogues, the Cold and El Niño years are the most dissimilar, maintaining statistically significant differences in upper-level wind magnitude and starting longitude values. MSLP at t=12 is lower in the Cold storms than the El Niño storms, but statistical significance between these values is not quite achieved. Furthermore, geopotential height differences and their associated rate of change with respect to map distance indicate that the 300mb geopotential height patterns of the El Niño and Cold analogues are quite different from one another. The La Niña and Warm analogue years are different from one another with respect to latitude and longitude values of Alberta Clippers at cyclogenesis. Based on these results, the effects of temperature increase alone will not influence the properties of Alberta Clippers as much as changes in ENSO that could be caused by global climate change.
    • Using MyPlan as a tool for college students in maing their career decisions.

      Lamichhane, Reema (2012-05-21)
      Making a right career choice and preparing accordingly to achieve that career goal is a key to success for every individual. In this study, the researcher evaluated the effectiveness of students using MyPlan, a career assessment tool, to help them make career related decisions. The pretest-posttest analysis showed that MyPlan helped students make an informed career decision to some extent. Chi-squared and correlation analysis of students’ responses before and after taking MyPlan suggested a positive correlation between students taking MyPlan and choosing a college degree major. Also, students agreed strongly when they were asked if MyPlan was helpful in deciding their college major. Collectively, this study derived a strong suggestion that MyPlan is fairly effective and students find it helpful to guide them in making career choices. However, this study was limited as there was a time restraint, subject disparity, and small sample sizes. Therefore, a subsequent study is recommended with a larger sample size and a longer study period. Regardless, this study provided some preliminary data to indicate MyPlan can be an effective tool for college students to guide them in their career decision making process.
    • Using Stable Isotope Analysis to Study Altitudinal and Latitudinal Bat Migration

      Arias, Lily (2014-10-03)
      The general lack of knowledge on basic aspects of the biology of temperate and tropical bats, their low reproductive rates, and threats such as white nose syndrome, wind farms, and habitat loss, make them very susceptible to population declines.My research uses an innovative technique, the analysis of stable isotopes, to study the ecology of bat migration with the main goals of contributing significantly to the understanding of bat biology and assessing the conservation status and susceptibility of bats. In the first chapter,I measured the content of hydrogen isotopes in fur samples of migratory bat species killed at a wind farm in northern Indiana to determine their geographic origin.North American tree bats ( Lasiurus borealis, L. cinereus,and Lasionycteris noctivagans)are considered long distance migrants. In North America, peaks in bat mortality at wind farms occur between mid-July and mid-September. This period is associated with fall migration of bats from their summer (breeding) grounds to their wintering grounds. Thus, wind turbines may have serious negative effects on a strategic event in the life of bats by interrupting migratory connectivity and thereby imperiling the long-term persistence of migratory bat species at large scales.The analysis accurately predicted the known origin of control samples and estimated that non-control bats killed at the wind farm originated from several populations in the United States as well as in Canada. My results highlighted the threat of wind farms to local bat populations as well as to bats originating far from those farms, and emphasized the need for conservation policies across borders.High variation in stable hydrogen isotopes in migrant individuals of all 3 species was observed, suggesting that individuals or populations from a variety of regions pass through the wind farm. In the second chapter,I evaluated the triple-isotopic (hydrogen, carbon, and nitrogen) composition of the tissues of 7 bat species collected at 3 altitudes in the Central Andes of Peru,and the variation of these isotopes across an altitudinal gradient,the application of isotope analysis to migration studies, and trophic effect. Previous studies had demonstrated that iv hydrogen isotopes were a reliable tool to track altitudinal movements of birds, and there was evidence from soil and plant studies that nitrogen and carbon isotopes could serve the same purpose. However, studies focused on bats were lacking. Hydrogen and nitrogen isotopes in the sanguinivorous control were found to be enriched relative to those of the syntopic frugivores.Carbon isotopes in the sanguinivorous bat were depleted when compared to frugivores.Differences in hydrogen found between trophic groups are the first reported for the species studied and support results found elsewhere in the Neotropics.My results demonstrated that, in spite of the wide array of physiological and environmental factors producing temporal and spatial variation, the analysis of hydrogen isotopes is a promising tool to study altitudinal movements of bats when used over long distances. Neither stable isotopes of nitrogen or carbon appear to be reliable to track movements along short gradients such as those along mountains. The contrast of these findings with the results of previous studies suggests that isotopic gradients may be specific to given taxon and localities.My results contributed to the understanding of bat movement patterns and therefore to assessing their sensitivity to potential threats such as habitat loss and connectivity.

      Foxx, Heather A. (2015-01-07)
      Terre Haute, Indiana, is similar to many older cities throughout the United States with a history of manufacturing and industry that relied on extensive road and rail networks. This industrial history has resulted in the presence of over 20 brownfields and even a Superfund Site within the city today. Historic neighborhoods and abundance of pre-1950’s homes is another characteristic of the city. Unfortunately, improper removal and deterioration of lead (Pb) paints, as well as high Pb solder used in gutters, appear to be significant sources of soil Pb in Terre Haute. Despite the fact that most new environmental sources of Pb pollution have been eradicated, many areas of the city still have elevated soil Pb concentrations and the city continues to have children with elevated blood Pb levels. With the Center for Disease Control’s recent reduction in screening levels for blood Pb from 10 μg/dL to 5 μg/dL, the occurrence of children with childhood Pb poisoning could be greater than previously recognized. The goal of this study was to better understand the modern-day spatial distribution of Pb in surface soils across the city of Terre Haute. To achieve this goal, surface soil samples were collected across the city. New data were collected from city-owned properties (i.e. parks, cemeteries, and abandoned lots), Indiana State University land holdings within the city, residential properties, and community gardens. Data collected from residential areas included samples near the road, from beneath the gutter dripline of the house, in the backyard, in the garden, and other areas of importance to the homeowner. Samples were analyzed via handheld X-ray fluorescence (XRF) analyzer on site to provide homeowner with immediate feedback with the ultimate goal of increasing the use of safer urban gardening practices. Samples were then dried and crushed to re-analyze with the portable XRF, and samples with values >200 ppm Pb were processed and analyzed with the ICP-OES to verify the results. Results produced a wide range of Pb concentrations, from <5 ppm to >30,000 ppm for the residential areas. The spatial distribution of Pb was determined using a simple ordinary kriging method and Empirical Bayesian Kriging method by analyzing the total sample set, samples collected near the road, samples from yards and gardens, and under the gutter driplines of homes were also kriged. Samples collected near the gutter dripline had the highest Pb concentrations, while overall spatial trends depict higher Pb concentrations in the historic portion of the city, with concentrations decreasing with distance from the older part of the city. The predicted Pb concentrations generated from the total sample set was then compared to demographic, environmental, and infrastructure characteristics for Terre Haute. OLS regressions using both maximum and average Pb concentrations indicate a statistically significant (p=0.000) positive correlation between high Pb concentrations and percentage of vacant homes. Maximum and average Pb concentrations were then linked to individual U.S. Census block groups with associated demographic attributes. Bivariate local indicator of spatial association (Bi-LISA) analysis indicates populations of low socio-economic status are regularly being exposed to higher Pb concentrations in their neighborhoods, while populations with higher socio-economic status are exposed to lower Pb concentrations. The higher Pb concentrations and populations with lower socio-economic status both occur in the central portion of the city where historic development occurred representing environmental injustice.